Исторические предпосылки
Содержание
{jcomments on}
• 1 Рождение поляризованных объектов в области абстракций ума
• 2 Обыденное мышление
• 3 Диалектика
• 4 Сброс
• 5 Многополярность
Рождение поляризованных объектов в области абстракций ума
"Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств" Л. Карно.
Это высказывание Л.Карно очень ярко характеризует стихию математиков при получении поляризованных объектов. Издревле числа считались "действительными". Это связано с натуральными числами и арифметическими операциями над ними.
Важным этапом в развитии поляризации объектов было введение отрицательных чисел китайскими математиками за два века до н. э.
Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними.
В VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом.
В VIII веке было установлено, что квадратный корень из положительного числа имеет два значения -положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя.
В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени.
Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a,b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически. Тем не менее, всякое уравнение n-й степени имеет n корней, если рассматривать и комплексные числа. В этом математики были убеждены еще в XVII веке, основываясь на разборе многочисленных частных случаев. На рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.
Итальянский алгебраист Дж.Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений, не имеющая решений во множестве действительных чисел, имеет решения с числами отрицательными, находящимися под квадратным корнем. Кардано называл такие величины "чисто отрицательными", и даже, "софистически отрицательными", считал их бесполезными и старался их не употреблять
В 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней.
Название " мнимые числа " ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века - Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа (мнимой единицы). Этот символ вошел во всеобщее употребление благодаря К. Гауссу .
Термин " комплексные числа " был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus ) означает связь, сочетание, совокупность понятий, предметов, явлений, Образующих единое целое.
В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование. Постепенно развивалась техника операций над мнимыми числами.
На рубеже XVII и XVIII веков была построена общая теория корней n- ых степеней сначала из отрицательных, а затем, из любых комплексных чисел, основанная на формуле английского математика А.Муавра (1707). С помощью этой формулы можно было так же вывести формулы для косинусов и синусов кратных дуг.
Л. Эйлер вывел в 1748 году замечательную формулу, которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень. Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.
В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.
Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.
В конце XVIII века, в начале XIX века было сочинено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой, а вектором , идущим в эту точку из начала координат. При таком истолковании, сложение и вычитание комплексных чисел соответствуют эти же операции над векторами. Вектор можно задавать не только его координатами a и b , но так же длиной r и углом j , который он образует с положительным направлением оси абсцисс. Число r называют модулем комплексного числа z.
Геометрическое толкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.
Комплексные числа нашли применение в многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.
После создания теории комплексных чисел возник вопрос о существовании "гиперкомплексных" чисел -чисел с несколькими "мнимыми" единицами. Такую систему построил в 1843 году ирландский математик У. Гамильтон, который назвал их "кватернионами". Правила действия над кватернионами напоминает правила обычной алгебры, однако их умножение не обладает свойством коммутативности.
Совершенно незаметно появился фрагмент трёхполярных отношений в теории групп. Постановка в соответствие двум обратным объектам единицы и есть фрагмент трёхполярного пространства. Конечно, в том тоже стихия, которая пришла от деления. Если "расщеплением" двухполярности математики наткнулись на четырёхполярность, то операция деления привела их к трёхполярным свойствам. Увы, но, в отличие от "комплексных чисел", никто не заметил и не оценил возможный прорыв в трёхполярность. Возможно, что по инерции (как получились "гиперкомплексные числа" кто-нибудь и наткнулся бы на пятиполярность и иные виды поляризованных пространств.
Из истории развития комплексных и гиперкомплексных чисел, а так же абстрактных алгебр, заметно упрямство математиков, которые производя "расщепление" двухполярных "действительных чисел", напроч лишены различения между поляризацией и количествами. Это же видно и в формальных моделях (группа, кольцо, тело, алгебра).
Серьёзный отрыв от двухполярности делает Николай Иванович Лобачевский (1793 - 1856) и Георг Фридрих Бернхард Риман (1826 - 1866). Однако чёткого осмысления такого вида ума нет. Причина простая: связь свойств анализатора зрения со свойствами ума нужно было осознавать. Для этого нужно знать и различать mind:виды ума.
В 1977 году В.Ленский показывает, что у чисел нет никакой "мнимости". Есть поляризованные объекты. Примером таких объектов можно поставить двухполярные числа, которые назвали "действительными", четырёхполярные числа, которые назвали "комплексными", суперпозицию трёх четырёхполярных лок (пространств "комплексных чисел"), которые назвали "кватернионами" и изыскание ещё расщеплений (октавы) и "гиперкомплексные числа".
В.Ленский развивает теорию многополярности, в которой все перечисленные небывалые числа становятся частным случаем огромной системы поляризованных пространств.
Обыденное мышление
Теперь никто не скажет когда появилась поляризация в виде "моё", "чужое", "друзья", "враги", "здоровье", "болезнь". Точно так же не найти автора двухполярных разделений на "положительное" и "отрицательное". Обученный с детства ум людей цивилизации Запада успешно поляризует объекты восприятий и классифицирует их в две группы. К полярности "положительное" относят класс предпочитаемых объектов: "друзья", "здоровье", "моё", "счастье", "любовь", "успех", "положительные эмоции" и т.д. К классу "отрицательных" относят не предпочтительные: "враги", "болезнь", "неудача", "несчастье", "ненависть", "отрицательные эмоции" и т.д.
Ум этой цивилизации непрестанно сортирует поступающие объекты мышления, а затем использует их в отношении друг с другом. Двухполярные законы отношений становятся свойством линейного ума, так, что, никто не сомневается, что "уничтожение врагов это хорошо", а "уничтожение благ это плохо" Как и положено ум двухполярных отношений пришел к мере.
Двухполярный и линейный ум цивилизации Запада заполонил весь мир, однако входит как незначительная часть в совокупность мышления, которую составляют различные mind:виды ума.
Диалектика
Как и в математике у мастеров, прорывающихся из двухполярного ума, есть авторы. Зарождение прорыва началось Сократом. Впрочем, справедливости ради, диалектика до этого развилась в буддизме. Однако сформировать этот прорыв и завершить двухполярный ум удалось Георгу Вильгельму Фридриху Гегелю. Этот мастер вплотную подошел к трёхполярным отношениям. "Когда мы говорим о +А, то тут же появляется -А, но именно этим определяется третье А, которое не есть ни +А, ни -А". Гегель мог бы формализовать зародившийся в его уме вид трёхполярных отношений, но сделать словами это не возможно; каждое слово поляризовано двухполярным видом ума. Оставалось предвосхитить математиков, которые, стихийно получив четырёхполярность (комплексные числа) пропустили трёхполярность.
Сброс
У формального мышления есть то преимущество, когда оно не завязано напрочь необходимостью использовать слова. Издревле слова были прикреплены к двухполярности. Теперь оторваться от них и свойств линейного ума крайне сложно.
Математикам и геометрам было проще, так как ум был в распоряжении только законов отношения между объектами. Обыденному мышлению перейти на иной вид ума, без сброса всего накопленного в понятиях, не реально. Такой ум имеет свойством только приобщать. В истории сброс делает ум мудрецов. "Великая истина не лучше великой лжи", "Победа не лучше поражения и позора" говорит Лао-Цзы. Если применить эти свойства, исключившие линейность из двухполярного ума, то огромный мир ума цивилизации Запада рассеется как дымка.
Свершение сброса не только избавляло от страданий, принесённых линейным умом в его мере, но и было условием развития иных видов ума. Мастерства сброса достигли монахи в уме татхагаты, то есть в виде ума, где нет не только линейности, но и двухполярности.
Многополярность
Многополярность, как свойства мастерства ума и его зрелости, имеет предшествие в диалектике, но ещё раньше законы отношений в словесных символах (в отличие от математиков, где символы формальные)появились в Сефер Иецире (откуда началась каббалистика). Конечно, как и диалектика, это частный случай в палитре многополярных видов ума, но на словесных символах в Сефер Иецире совершен скачёк к шестиполярным отношениям.
С 1977 года Василий Васильевич Ленский развивает многополярность во всём её объёме, в символах как словесных, так и формальных. Все находки в историческом развитии человечества вошли как частные случаи в целостную систему. Сверх того, многополярность предвосхищает неведанные пространства.
Как законы двухполярного ума цивилизации Запада нашли своё место в энергетике, технике и технологиях, так и многополярность В.В.Ленский подтвердил в открытии новых видов энергий, техники и технологий.
Многополярность
«Там, где есть процесс мышления, там обязана быть поляризация объектов мышления; безотносительного мышления не бывает». Василий Ленский.
Пространства.
Натуральные и ПОЛЯРИЗОВАННЫЕ ОБЪЕКТЫ
1. По случаю абсурда, вызванного неразличением учёными того, что любое количество (1, 2, 3..) является натуральным и не зависит от полярностей (+, −, ί, j, k, −ί, −j, −k), так же как неразличение объектов наблюдений от поляризованных «друзья», «враги», «моё», «наше», «болезнь» и т.п., приходится особо отметить здесь этот факт.
2. Все числа и объекты изначально натуральные. Однако если мы собираемся число вводить во взаимодействие, и обозначаем, например, +15, то само число 15 есть факт натурального количества, а полярность представляет +. Число +15 является поляризованным числом. Например, у кого-то было 15 лошадей, но и был долг 15 лошадей. По числу 15 лошадей как были натуральными, так и остались, но по поляризации «моё» и «долг» будет +15 − 15 = 0, то есть лошадей не стало, хотя лошади никуда не делись. Этим и отличаются натуральные числа от поляризованных чисел. Натуральное число есть факт наблюдающего ума, а поляризованное число есть объект для введения чисел во взаимодействие. Поэтому факт натурального числа остаётся, а поляризованные числа могут исчезать.
3. Числа натуральные резко отличаются от действительных, «мнимых», «комплексных», и прочих чисел по свойствам ума. Наблюдательный ум отмечает факт количества, но мыслящий ум вводит эти количества во взаимодействие, окрашивая их свойствами того или иного вида ума. Теперь, после «окрашивания» поляризацией, числа становятся иными по своим свойствам. Поэтому есть числа и все они натуральные. Есть поляризация; она тоже натуральная и определяет качество, то есть свойство ума. Однако есть поляризованные числа и поляризованные объекты.
4. До момента анализа число или объект остаётся натуральным и свидетельствует о факте наличия. Однако как только они вступают в анализ, то они тут же попадают в иной мир и поляризуются. Например, «в данной местности восемь озёр» обозначает факт количества, но когда определяют, что «пять из них находится в лесистой местности, а остальные в степи», то тут же незримо в силу вступает анализ: «восемь минус пять – число озёр в степи». Что определило поляризацию? Закон вычитания.
5. Незаметно люди, используя сложение и вычитание, числа «отрицательные», «положительные» а так же ноль, обозначили как "действительные". Это – резкий отход от натуральных чисел, а точнее, скачёк из одного вида ума в другой. Именно этим скачком осуществляется факт удаления и полного отрыва от натуральности. В этом виде ума объективной реальности больше нет; её заменяют мира ума со своими свойствами и законами.
6. Незаметность скачка и по сей день держит исследователей в самообмане, что сохраняется непрерывная связь с действительным миром. Это приковало их к «действительным» числам, хотя совершен бесповоротный отрыв чисел в мир ума. Например, немало хлопот доставили «мнимые числа», «кватернионы», «октавы», «гиперкомплексные числа», «кварки», «струны», хотя всё это – полярности разных видов ума.
7. Пристрастие к «действительным» числам было подогрето так называемым «нормированием», которое произросло из «комплексных чисел». «Нормирование» есть факт того, что в четырёхполярном мире, который назвали «комплексными числами», взаимодействие (х + ίу)(х – ίу) = х2 + у2 . Создалась видимость, что из «мнимых», числа перешли в «действительные». На самом деле ухода из четырёхполярных отношений не состоялось.
8. В математике решение уравнений третьей степени затруднялось потому, что к поляризованному числу применялись только правила двухполярных отношений. Что такое «извлечение корня»? Из чисел как таковых извлекать корень означает совершать действие обратное возведению в степень. Но другое дело извлечение корня какой-то степени из поляризованных чисел. Проблему составляли не числа, а полярности. К сожалению математики и по сей день не знают, что в четырёхполярном пространстве исчислений нет проблем извлечь квадратный корень из «отрицательного числа».
9. Есть пространства, в которых двухполярных чисел не существует вообще. Например, в трёхполярном, пятиполярном, семиполярном, девятиполярном и пр. мире чисел не существует чисел двухполярных чисел, то есть «отрицательных» и «положительных».
10. Выходом из создавшегося затруднения может быть только подбор пространства натуральных чисел и объектов, для которых выполняются законы отношений либо заданные, либо установленные как научный факт. Например, в физике элементарных частиц взаимоотношение кварков описывается отношениями той алгебры, в которой есть законы трёх трёхполярных и двухполярных лок, поставленных в систему, а октонионы хорошо описываются семиполярностью.
11. Склеивание полярностей с числами привело к тому, что математики до сего времени считают не двухполярные числа не существующими в действительном мире, хотя поляризованные числа прекрасно описывают соответствующие отношения в действительном и объективном мире. Не способность различить поляризацию чисел от чисел как количеств, привело к блужданию математической мысли в дебрях и вариациях.
12. Сделанные в истории науки открытия поляризованных чисел, шаг за шагом заполняют чёткую систему локализованных пространств – лок – каждая из которых имеет дело с действительным миром вещей и выражает собой соответствующие виды ума. Система многополярности охватывает всю совокупность поляризованных чисел и объектов.
Действительные высказывания.
1. Ещё сложнее дело с осмыслением поляризации в различных логиках. Когда бывают безотносительные процессы мышления?! Формализация не имеет смысла тогда, когда от неё отрывается цель высказываний, их назначение, заинтересованность автора высказываний. Если же высказывание имеет назначение, то оно поляризовано.
2. В пример можно привести формализацию обыденных высказываний двухполярного линейного ума, которые заполнили цивилизацию Запада. В последствии весь анализ и формальные построения науки всецело выполняются свойствами этого ума.
3. Если мы попадаем, например, в трёхполярный мир мышления, то все эти формальные построения логик вообще не имеют значения.
4. Труднее будет с высказываниями иного числа полярностей, чем привычные двухполярные. Слов таких ещё нет. Они появятся как следствие свойств соответствующих видов ума. Теперь есть символические высказывания, которые выражают законы отношений в каждом локальном пространстве.
5. Локализованные пространства и есть виды ума в смысле наличия в них законов отношений между объектами высказываний. Например, в двухполярном линейном уме цивилизации Запада есть законы отношений, на которых и строятся все высказывания. Эти законы общеизвестны:
а). ( + )*( + ) = ( + ), откуда "торжество"*"здоровья" = "хорошо".
б). ( + )*( − ) = ( − ), откуда "укрепление"*"врагов" = "плохо".
в). ( − )*( + ) = ( + ), откуда "болезнь"*"друга" = "плохо".
г). ( − )*( − ) = ( + ), откуда "уничтожение"*"врагов" = "хорошо".
Роль многополярности
• 1 Роль Могополярности
• 1.1 Несоответствие
• 1.2 Виды ума
• 1.3 Линейный двухполярный ум
• 1.4 Конфликт
• 1.5 Кризис науки
• 1.6 Предпосылки в уме
• 1.7 Тенденция
• 1.8 Кризис политики
• 1.9 Побуждения
• 1.10 Кризис интеллекта
• 1.11 Многополярность
Всему есть мера. Мера есть и двухполярному уму цивилизации Запада. Следовательно, есть мера науке, политике, общественным и межгосударственным отношениям. Продолжение после исчерпания меры начинает развивать и продуцировать патологию.
Несоответствие
От органов непосредственного восприятия, которые воспринимают всегда "тут" и всегда "теперь", ум отличается сохранением. Если в восприятии остаётся отпечаток, то орган больной; воспринятое обязано постоянно исчезать. Напротив ум - нет ума без сохранения воспринятого в памяти. Поэтому ум всегда "вчера".
Виды ума
Есть виды ума, и построенных на нём знаний, которые приближаются по свойствам к органам непосредственного восприятия. Это ум татхагаты. Такой ум не имеет причин и следствий, нет в нём линейности и иерархии, нет в нём двухполярности.
Есть вид ума, ещё приветствующий свойства непосредственного восприятия, но уже закрепляющий. Это ум мудрости со свойством у-вэй (недеяние).
Есть линейный двухполярный ум. Зто ум цивилизации Заапада (см. Виды ума).
Есть иные виды ума, в отличие от привычного (и пока единственного для людей Запада, см.Виды ума).
Линейный двухполярный ум
Есть вид ума, которые усиливает закрепление и цементирует отпечатки восприятий законами отношений. Самым прогрессивным в этом оказался ум цивилизации Запада. Понятия здесь не только жестко скрепляются законами, но и строятся по ниточкам причин и следствий. Естественно, что цементируется и окружающий мир, в который проникает такой ум. Например, если нет незыблемых законов (двухполярных), то нет и науки, нет знаний. Цементируются и характеры, преобразуя людей в расу "механических людей".
Конфликт
Однако органы непосредственного восприятия не могут иметь закрепление воспринятого; для них это патология. Поэтому между формирующим линейным умом цивилизации Запада, и сущностью восприятий, созрел конфликт. Он выражается в деградации Человека в пользу окаменелых законов линейного ума.
Кризис науки
С другой стороны, сама наука, опираясь на воспринятое результатов наблюдений зрением, вынуждена сталкиваться с фактами, которые удовлетворяют законы анализатора зрения, но не удовлетворяют законам линейного ума. Так родились "революционные" Теория Относительности, релятивистская динамика, квантовая хромодинамика, объединяющие теории взаимодействий и сил.
Предпосылки в уме
Сам ум имеет то превосходство в своём мире мышления, что полностью оторван от действительного мира восприятий. Это позволило наткнуться на "мнимые" числа, на "кватернионы" и дальше...увы, мерой стали цементирующие законы двухполярного ума.
Тенденция
В итоге, Человек пришел к тому, что конфликт между свойствами и законами (при отражении в мир ума)непосредственного восприятия и свойствами линейного ума достиг предела. Для разрешения этого конфликта и приведении в гармонию сущности Человека, спасая его от преобразования в "механического человека", необходимо приближение свойств формирующего ума к свойствам органов непосредственного восприятия. Эту роль выполняет многополярность.
Кризис политики
Линейный ум достиг предела и исчерпал меру в межчеловеческих и межгосударственных отношениях. Началась продукция насилий и патологии. Как и наука цивилизации Запада политика, опершаяся на линейный ум, пришла к мере. Линейный ум, натыкаясь на препятствие, то есть не соответствие его понятиям, агрессивен. Это мы и видим в политике государств, правительства которых имеют линейный ум.
Побуждения
Каждый народ имеет особенность культуры и особенности мировоззрения. Усилиние межнациональных отношений выражается взаимным проникновением культур. Суперпозиция культур и мировоззрений стала вторгаться в свойства ума. Однако линейный ум не имеет соответствующих свойств. Появившиеся эзотерические побуждения к знаниям Востока столкнулись со свойствами линейного ума самих эзотериков. Восток не состоялся в уме людей цивилизации Запада.
Кризис интеллекта
Ум вида линейного и двухполярного называют интеллектом. Свойствами этого ума нельзя охватить виды культур и цивилизаций построенных на иных видах ума. Не существует универсального ума с универсальными свойствами. В итоге, вся продукция линейного ума, то есть интеллекта, пришла к кризисному состоянию, приносящему экологические разрушения, страдания людям, насилия в политике, пропаганду убийств и дисгармонии в культуре, антигуманные настроения.
Многополярность
Многополярность не выдумка досужего ума, а неизбежность решения проблем Человек и его среды обитания. Это инструмент для выживания Человека на Земле и в Космосе. Не найдётся ни одной современной проблемы, которая не решалась бы многополярностью как видом знаний и как средству для созидания жизненного пространства человечеству в гармонии с окружающей средой. Это подтверждено не только изыскательским опытом мудрецов тысячелетий, но и экспериментально в духе